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An explicit finite-difference algorithm is presented for the solution of quasilinear diver- 
gence free multidimensional hyperbolic systems. The method consists of four steps per 
time level. The resulting scheme is fourth-order accurate in both space and time, though 
the intermediate steps are only first-order accurate. The family of schemes introduced is 
dissipative, and hence, suitable for both smooth flows and flows containing shocks. This 
method is compared, in several numerical examples, with both second-order schemes 
and others that are fourth order in space, but second order in time. 

1. INTRODUCTION 

With the advent of faster computers, it was realized that more complicated 
problems could be solved and with a higher degree of precision than previously 
obtainable. This advance in hardware has lead to a renewed study of algorithms 
that are more efficient at smaller error levels. Roberts and Weiss [22] first intro- 
duced schemes that are second-order accurate in time but fourth order in space. 
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This concept was continued by Crowley [8], Kreiss and Oliger [16], and Gerrity, 
McPherson, and Polyer [12], among others. These schemes are nondissipative, 
and hence, their main application has been in meteorological problems where 
shocks do not arise. One could add an artificial dissipative term to these schemes, 
but it is difficult to choose the coefficients so that they prevent nonlinear instabilities 
while not smoothing out important data (compare, Kashara and Rao [I 51). 
Other approaches to improving the accuracy in the spatial directions have been 
via spectral methods (e.g., Orszag [19]) and finite element techniques (e.g., Swartz 
and Wendroff [24]). These methods also seem to be most appropriate for problems 
where shocks do not occur and the solutions are sufficiently smooth. 

Should one be interested in a general code that is accurate in smooth regions 
but gives the correct shock speeds, the most appropriate techniques are generali- 
zations of the Lax-Wendroff method. A start in this direction was begun by 
Burstein and Mirin [7] and Rusanov [23] who introduced a three step third-order 
generalization of the Richtmyer scheme. For second-order methods in two space 
dimensions, one needs a minimum lattice of seven points at the previous time level 
(Livne [17]) while most schemes have a nine-point stencil for their domain of 
dependence. For third-order methods, one requires a domain of dependence of 
the order of 25 net points; this of course creates difficulties near boundaries. It 
was felt that once one uses this enlarged lattice, one might as well look for schemes 
that are fourth order in both space and time. For scalar equations, Abarbanel and 
Zwas [4] introduced a one-step method for conservation equations that in fact 
uses only a 21-point lattice. Later, Abarbanel and Gottlieb [2] suggested a family 
of multistep methods that are fourth order or higher for any quasi-linear 
divergence-free hyperbolic system. 

Another approach is that known as the method of lines. In this technique, one 
first discretizes in space obtaining a system of differential-difference equations. 
This is then integrated in time using a standard O.D.E. routine. Gary [IO] suggests 
using fourth-order accurate differencing in space followed by a fourth-order 
Runge-Kutta in time. This approach suffers from the serious handicap that at each 
time level, a net point needs information from an unacceptably large number of 
points at the previous time level. In the one space dimension case, the domain of 
dependence is 17 points, and in the two-dimensional case, it would be roughly a 
square of 17 x 17 mesh points. This causes difficulties near boundaries and also 
requires, for most problems, too fine a mesh. In view of all of this, we shall not 
make any numerical comparisons with such Runge-Kutta-like fourth-order 
accurate methods, Instead, we propose to investigate schemes that employ minimal 
domains of dependence. These will modify and extend the algorithm proposed by 
Abarbanel and Gottlieb [2]. 

The schemes introduced by Abarbanel and Gottlieb suffer from two disad- 
vantages. First, the method requires seven steps for fourth-order accuracy. This 
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is considerably more than required for ordinary differential equations. Second, 
the multidimensional schemes use a diamond shaped domain of dependence that 
creates some difficulties near boundaries. Furthermore, there now exists two 
separate sets of nodes that can lead to weak instabilities (see Houghton, Kasahara, 
and Washington [14]). Later, Abarbanel, Gottlieb, and Turkel [3] (AGT) showed 
that one can construct a four step fourth-order method in a single dimension. 
This was done by either using a three-level method, or alternatively a two-level 
method, where the intermediate steps are only first-order accurate. In this paper, 
we shall extend these latter results to several dimensions. In addition, the domain 
of dependence is rectangular, which minimizes boundary problems. As a final 
bonus, the stability requirement seems to allow larger time steps than either the 
one-step Lax-Wendroff or two-step Richtmyer methods. 

In many problems of physical significance, the major obstacle to obtaining high 
precision is the limited computer storage rather than time factors. For example, 
use of a fine grid over the surface of the globe, especially with multilayer models, 
quickly exhausts the high speed computer storage of present day machines. Use 
of auxiliary storage involves large time delays or else sophisticated software that 
is beyond the capability of most computer centers. In other applications, as in 
plasma physics, one integrates equation in physical-phase space. Hence, one- 
dimensional problems involve two computational dimensions, while two space 
dimensional problems imply the need of four computational dimensions in addition 
to the time variable. Thus, for the Vlasov equation, computer storage requirements 
are of extreme importance. Finally, the trend in computers is towards faster 
machines, for example, parallel mode operation. However, the high speed memory 
of these machines will not be much larger than present computers. For these 
reasons, we shall emphasize the core storage requirements of differing schemes in 
addition to comparing their efficiency in terms of running time. 

2. FINITE-DIFFERENCE SCHEME 

We shall confine the derivation of the algorithm to the two-dimensional diver- 
gence equation 

ut+f,+g,=O, (1) 

where f and g are vector functions of u. Identical results are true when f and g 
are functions of the space variables in addition to u. However, in order to minimize 
the algebra, we shall consider the case where they depend only on u. In one of 
the numerical examples presented in Section 4, f and g are functions of x and y. 

The system (1) also can be written as a quasi-linear system 

ut + Au, + Bu, = 0. (2) 
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We shall assume that this system is hyperbolic, i.e., A and B have a complete set 
of real eigenvalues and eigenvectors. To simplify the notation, we introduce the 
averaging and differencing operators. 

with corresponding notation for the y direction. Without loss of generality, one 
can always assume that dx = dy. We then define h 

h=dt- At 
Ax Ay ’ (4) 

where, as usual, At, Ax, Ay are the mesh spacings in the t, x, y directions, respec- 
tively. 

In this paper, we consider Burstein-type centering, where the intermediate 
steps are defined at mesh points (i, j) or (i + 1/2,j + l/2). One could also consider 
Thommen-type centering, where the intermediate steps are centered at (i, j) or 
(i + 1/2,j) or (i, j + l/2). The extension of MacCormack type schemes to fourth- 
order accuracy is difficult because of the lack of centering. 

We now describe a general four-step scheme in two dimensions. In Appendix A, 
we extend this to three space dimensions. We denote the numerical approximation 
to u(x, y, t) by wzj . By f(“‘, we mean f(w$, where the superscript is the number 
of the intermediate level. When k is equal to zero, the superscript is omitted, and 
we are referring to the start of a time level. 

(5b) 
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(When the right-hand side of Eq. (1) is nonzero, Eq. (5) has additional terms 
multiplied by dt. This inhomogenous case will be treated in a future paper on the 
shallow water equations.) 

Having given this general algorithm, it remains to determine under which 
conditions is a scheme of fourth-order accuracy. We demand that the scheme be 
fourth-order in both space and time and for nonlinear as well as linear problems. 
Therefore, it is not sufficient to analyze the amplification matrix of the scheme. 
Instead, one must carry out the Taylor series and compare terms through fourth 
order in dt and dx. It was demonstrated in [3] that one cannot build such a scheme 
where the kth step is &h-order accurate. Hence, one must include all lower-order 
terms in the expansions and do comparisons only after calculating wt4). Then, 
wt4) is fourth-order accurate, but, in general, w(l), wt2), wc3) will only be first-order 
accurate. The complete expansion of wc4) is given in Appendix B. Here, we 
demonstrate the procedure for w(l) and wc2). Thus, 

- adt[f,+g,+ @W2 
L 24 cf,m + 3fw + gw + 3&d] 

= w + Dw. 

Then, 

f”’ = f(w + Dw) 

=f+fwDw + ifwwP@" + 6fwcowVW' + WW3, 

where 

Dw = q V2w + a At [wt - q cf,,, + &u, + 3(f, + g&w)]. 
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Differentiating, one finds that 

f(l) = ,f - a At T e w,t + $(a At)” (AtW& - f(a At)3 (Attwt - Atw& 

+ (AxI 8 MM’,, + w,J), 

- a(At;iAx)2 [A(fz + 3&m + 3Atwzz + A(3f, + gA, + 3Atw,,l, , 

with a similar formula for g, . (‘I Use is being made of the formulas 

ft = Awt , fw,, = AttWt;aAtWtt . 

One then substitutes these values off:” and g:’ into Eq. (5b). Then, 

w(2) = (El + E2 + E3 + E4) 1~’ + q Kc2 + E4) w,, + (63 + E4) %*I 

+ (a1 + 4 At wt + t4A02 wtt + ; w2W13 KAw), + @t~t),l 

+ a1’A;‘2 At KA(wzz + w,,)), + (fWez + w,A, +fw + gm,l 

+ a1 ;44R2 GM2 AUxm + g,,J. 

One continues in this manner to evaluate wc4) (see Appendix B). This is then com- 
pared with w(t + At) expanded in a Taylor Series, i.e., coefficients of (At>’ in 
both, expansions are forced to be equal while coefficients of (Ax)“(At)l in the 
expansion of wf4) are set equal to zero. When this is done for all the terms through 
(At)4 (assuming At/Ax is a constant), the following conditions are derived for the 
parameters appearing in formula (5). 
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(6) YlAj2j3 + Yl(P2 + 193) hf, + (y3 + 73) %tlt, = *, 

(7) Y1Blj22 + Yl(A + B3> h2 + (y2 + y3) a2 = ?a-, 

(8) Y&G, = $4, 

c9) de1 +4e2 + 3e4) + %2 + y3)tE2 + e4) +y4 + 75 $-ye + y7 =o, 

(lo) de1 + 4e2 + 3e4> l3 + 2(y2 + ?a2 + E4) t2 

+ (74 + Y6 + Y6 + Y,) 4 =o, 

(11) &3lYl(~2 + E4) + Yl(P2 + 193) + (72 + y3)011 = 0, 

(12) rl(A + 4P2 + 4/3, + P4 + P, + 7A + 78,) + (y2 + y3)(a1 + 4a,) 
+ (74 + Y5 + Ys + Y,) jl = 0, 

(l3) YI@I + 283 + 84 + 3/3, + /%I + 3/3,) + (yz + ~3) 011 
+ (74 + 75 +x3 -tY,) fl =o, 

(14) y1 + 4(r2 + y3) + y4 + y5 + 7(y, + y,) + 4(~, + v2 + v3) 

+ lO(v4 + v5 + vg) = 0, 

(15) YI + 273 + y4 + 3y5 + 76 + 37, + 2V, + 4V, + 2v, + 4v, = 0, 

(16) 7+3 + 4(y2 + y3) j2 + b4 + y5 + y3 + 7,) tl =o, 

(17) Y1f3 + +'3j2 + (7'4 + 375 + y,j + 3y,)t, = 0, 

where 

(18) t, = a, 

(19) f2 = % + %, 

c2') '3 = p1 + p2 + 83 + 84 + 85 + /33 + fi,, 

are the times at which the intermediate levels are located. 
We also demand that ~(~1, wc3) be at least first order, and hence, 

cw El + 62 + q+ + 64 = 1, 

(22) e1+e2+e3+e4= 1. 

Finally, from symmetry of x and y we have 

(23) Ea = Es, 

(24) e2 = 8, . (6) 
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We note that the first eight equations are identical with those of the fourth-order 
Runge-Kutta ordinary differential equations (see Ralston 1211). In sum, we have 
24 nonlinear equations for 34 variables, and so expect that system (6) will represent 
a multiparameter fourth-order family of schemes. In fact, we shall assume that 
the parameters 

t1, t, , E2, 02, A, A, y3, y7, v3, vj , vg 

can be chosen arbitrarily. We can then express the general solution to Eqs. (6) 
in terms of these 11 free parameters. For a solution to exist, we must assume that 
tl # 1 and t, # 1. Under these circumstances, we have two sets of solutions. 

If tl = t, , a solution exists only if tl = l/2. However, in this case, the ampli- 
fication matrix turns out to be unstable, and so we shall not describe this case. 
If tl # t2 we must have t, # l/2. In summary, the following conditions are assumed 
to hold 

tlfo, tl#t, &#l, t2#0, &#I, tzft,. 

The general solution to system (6) in terms of the above free parameters is 

t, = 1, (this is also true for O.D.E.) 

y 
1 

= (l/4) - Wl + t2)/3 + (t,t,P) 

(1 - w - t2) ' 

1 - 2t, 
y2 = 12t,(l - t2)(t2 - tl) - IJ3 ’ 

1 - 2t, 
r = - 12t,(1 - t1)(t2 - tl) ’ 

ys = _ UP) + t2 - 2t1 + t,t, - t22 
- 12t,(l - t2)(t2 - tl) 

Y3t2 7 --- 
Y5 = - ;; 

-- 
tl 2 9 

- 
Y7, 

- 2v, - v5 - 2v, ) 

v1 = ; _ 3Yl + 3Y2 + Y3) + ;cY4 + YJ + Ya + y7 _ v2 _ v3, 

1 2 
v4 = - (Yl + Ya + Ys - Ya - Y7) - 3 - v5 - ye, 2 
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1 
El = - - 2E2 - c4 ) 2 

e3 = e2 , 

e,=i-L U/2) - t2 

12t, (l/4) - ((tl + Q/3) + (t&s) - e2 ’ 

8, = i - 28, - e1 , 

t202 - t1) 

al = 2t,(1 - 2t1) ’ 

ci2 = t2 - 011 , 

Bl = 
1 - 2t, 

Wt2(t2 - t1) ’ 

163 = -(yl+ If31 + 2/q% + E4) - p2, 

fl, = - ; [l + 3(82 + 83) + (l/4) - ((tl + l&,3) + (t&/2) 

x (011 + ‘b)(l - 2t,) + 1 - 2t, 
12t, 12 )I - A 3 

A = -dY2 + 73) - Vl 
2Y, 

- ; (1 - 82 - 83 + 2/M, 

84 = 1 - A - B, - p, - 195 - p, - p, , 
a = t, . (7) 

We thus have a multiparameter family of schemes that is fourth order in both 
space and time. We would like to choose these parameters to optimize the properties 
of the scheme. For example, we would like to achieve a stability condition that 
allows a large At; we would also like to minimize the phase error. Furthermore, 
depending on the problem, we would like to either maximize or minimize the 
inherent dissipation of the scheme for long wave numbers. Thus, for smooth 
problems, we would like a small amount of dissipation, though it is obvious that 
we cannot eliminate it entirely. For problems with strong shocks, we would wish 
to maximize the dissipation to eliminate nonlinear instabilities. Since the dissipation 
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is inherent within the scheme, rather than imposed artificially, it is hoped that this 
inherent dissipation will yield physically meaningful results and not just smooth 
out all information, as can happen when adding a large amount of artificial 
dissipation to a nondissipative scheme. 

In this paper, we shall not attempt to analyze the effects of choosing various sets 
of parameters. Instead, we shall find the amplification matrix, and arbitrarily choose 
one set of parameters that seems to allow large time steps consistent with stability. 
In a future paper, we shall analyze ways of improving the results of Section 4 
by a more judicious choice of free parameters. 

3. AMPLIFICATION MATRIX 

Denoting the finite-difference scheme (5) by 

W”fl = C(t) IP), 

we calculate the amplification matrix G(cx, /3) by the standard method 
qa, p) = e-ik,o~+k&dqt) &,dz+k,dd, 

where 
a=k,Ax, /I=k,Ay; -n,<ol<n, -n<fl<r. 

To simplify notation, we introduce new variables f, r] defined by 

and consider G as a function of e and T. We note that the Fourier transform of 
pZ is simply (1 - ,$2)1/2 while the Fourier transform of 6, is just 2if, and similarly 
for the other space dimensions, We also introduce the matrices 

M = A&l - 92)1/Z + Br)(l - 52)1/2, 

R = &[Ar](l - .$2)1/z + B&l - q2)1/2]. 
(9) 

In terms of these variables we have, after a considerable amount of manipulation, 

G(t, 7) = I + W - WY1 - W2 Ml + (2/3)(52 + $1 + ~?~21 

+ (2/3) iR[l - 3~d5~ + q2) + 3~9~1 
- 2M2[l + (1/3)(P + q2) + 2%‘c2~21 
- 2/3(1 - [2)‘/2(1 - +)‘/“(MR + RM) - 4a2y2R2 (10) 
- (4i/3)(1 - .$“)I/“(1 - q2)li2 M3 

- 8i[ylkb2M2R + ylP2tlMRM + y2W&M21 + W) M*, 
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where 

01 = Y#r + (Y2 + Y3) E4 + Ye + Y7 - Ys + v5 + "6 - v3 2 

02 = Y2(E2 + E4) + Y6 - Y5 - v3 + v4 + v5 9 

u3 = 02 - Yz!% - v4, 
(11) 

u4 = YdSlE4 + B2 + 83 - B5 + B6 + 197) + (Y2 + 73) t2 + (Ys + Y7 - r5) t1, 

the oi can be chosen arbitrarily without affecting fourth-order accuracy. We first 
consider the case where ol,y, = 0, i.e., the R2 term vanishes. If A and B are scalar, 
we can choose &, , q0 so that M = 0. Then, 

G(&, rlo) = I+ Ml - 3a2(&,2 + ~02) + 3~3~02~021, 

and obviously, 
I G&I 3 dl > 4 if & , q0 are small. 

Hence, if we wish stability for all scalar A and B, we must choose ol,y, # 0, in 
fact, a2y2 > &. Even in the case of scalar A and B, the stability criterion is far 
from trivial, and so the choice of the parameters is largely a question of intelligent 
guessing. 

To select a set of parameters, we first set p7 = y, = IQ, = 0, to reduce the 
number of arithmetic operations in calculating the finite difference formula (5). 
We next note that in the amplification matrix the coefficients of M2R, MRM, 
RM2 are all free. We wish G = S + iJ to have symmetric S and J when A and B 
are symmetric. We thus require 

YlB1~2 = w32m = Y2"lh. 

If we also wish t, and t, to be rational, this implies t, = Q, t2 = $, and hence, 
determines I% , P2 , y1 , y2 , a1 , a2 . The only free parameters remaining are e4 , 8, , 
v3, vg . We determine these by choosing values for the parameters u1 , u2 , u3, u4 , 

which appear in the amplification matrix (Eqs. (10) and (11)). 
A preliminary guess at appropriate values are uI = u2 = u3 = 0 and u, = -4. 

With this choice, the parameters in Eq. (5) take on the following values 

t,= l/6, t,= l/3, t3=1, 
a= l/6, 
011= l/4, 01,=1/12, 
l ,=11/6, E,=-(4/3), E,=-(4/3), c4= 1 l/6, 
t%=5, 82=5, &=495/8), /&z-(22/3), p5= 1512, &=65/24, j&=0, 
8,=17/12, 0,=5/6, 8,= 516, 8,=(25/12), 
y1= 115, ?J2=2 Y,=-(l/2), Y4=-(l/5), Y5= 1, ys= -2, y7=0, 
v,=-(10/3), v,=25/6, v,=-(7/6), v,==8/3, v5=-(1 l/6), vs=O, 02) 

581/21/1-7 
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and the amplification matrix becomes 

G(.$, 7,) = I + 2i(I - [2)1/2(1 ~ yz)lla M[l + (2/3)(t2 + q”)] + (2/3) iR 

- 2M2[1 + (1/3)(c2 $- -q2) - (2~2] - (2/3)(1 - f2)1’2 
x (1 - q2)‘/2(MR + RM) - (2/3) R2 

- (4i/3)(1 - t2)‘j2(1 - y2)lj2 M3 

- (2i/3)(M2R + 2MRM $- RM2) + (2/3) M4, 

where 5, T, M, R are given by Eqs. (8) and (9). 

(13) 

Thus far, we have been unable to derive analytically a sufficient stability criterion 
for this amplification matrix. Our experience has been that, if one restricts oneself 
to symmetric matrices A and B, then the worst case happens when A and B commute. 
Thus, for example, the Lax-Wendroff scheme has its most stringent stability 
conditions when A = B (similarly, see Eilon, Gottlieb, and Zwas IS]). When A 
and B commute, one can use the spectral mapping theorem to replace the matrices 
A and B by their respective eigenvalues, and so reduce the problem to a scalar 
one. Even in this case, it is difficult to determine analytically the stability condition. 
However, in this case we can solve the problem computationally, i.e., we consider 
a range of scalars a, b, -2 < a < 2, -2 < b < 2 and evaluate G for a discrete 
set of [ and 7. We then find that a sufficient condition for j G(t, 7)I < 1 is that 

w/w pw < 1 and (.W.Y) p(B) < 1, 

where p(A) = a is the spectral radius of A. We note that this allows larger time 
steps than most second-order two-dimensional methods. Numerical experiments, 
with the two-dimensional wave equation, fluid dynamic system and the linear 
elastic system indicates that in these cases, we can exceed even these time steps 
and maintain stability. (The C.F.L. number for the fluid dynamic system 
exceeds 1.3). 

4. RESULTS 

Swartz and Wendroff [24] have indicated that there are basically three ways of 
comparing schemes. The first is simply to run the schemes on several problems 
of interest and to compare them with respect to core storage requirements and 
efficiency in running time. Thus, we assume an error tolerance and decrease the 
space mesh width and/or time steps until this error level is reached. Of course, 
this assumes a knowledge of the analytic solution. This can be achieved either by 
choosing simple problems for which the analytic solution is known, or alternatively 
solving the problem computationally with a fine enough grid to ensure errors 
considerably below that which is being used in the test problems. This approach 
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seems to be the most practical from a users viewpoint, especially if he is interested 
in one particular system of equations. The main difficulties of the method are the 
programming problems. Thus, it is difficult to ascertain that the several programs 
have all been optimized to the same degree. For example, the comparisons may 
be very different if the programming is done in assembly language, at least in part, 
or completely in some higher compiler language. Also, results will vary, depending 
on whether the coding has attempted to minimize core storage or to minimize 
running time. 

An alternative method of comparing schemes is to compare their truncation 
errors under the assumption that only the leading term is of importance. This 
method is, of course, limited to linear problems, as it is difficult to compare the 
effects of unknown nonlinear terms in the algorithm. On using this method for 
higher-order methods in space and time, one finds that the truncation error consists 
of sums of many higher-order derivatives with varying coefficients. This makes 
direct comparisons exceedingly complicated. A further difficulty is encountered in 
schemes that are more accurate in the space variables than the time dimension. 
One must decide in advance whether one considers a sequence for which At/Ax = 
constant or At/Ax ---t 0 as Ax approaches zero. The different assumptions will 
greatly affect the treatment of truncation errors or boundary treatment. However, 
in practice, one does not work with a sequence of meshes tending to zero, and so 
this should not affect practical considerations. 

A third possibility is to compare the schemes with respect to very simple problems 
and assume that these results have general validity. This method is usually very 
disadvantageous to schemes that are of higher-order of accuracy in both space 
and time. First, one frequently only discretizes the space variables in such an 
analysis (see, for example, Kreiss and Oliger [16]). Thus, the whole advantage of 
higher temporal accuracy is lost. Furthermore, the obviously complicated formulas 
needed for higher time accuracy are obviously inefficient when the equations are 
simple. However, the additional work is of less importance if the calculation of 
the fluxes and forcing terms is of sufficient complexity. For these reasons, we have 
chosen to revert to the first idea and will compare schemes on the basis of actual 
computer runs on sample problems. 

The first problem that we shall consider is the wave equation in two space 
dimension, with periodic boundary conditions, i.e., 

% = 0, + w, , vt = %7 wt = %, (14) 
with 0 < x < 21i2, 0 < y < 2112, 0 < t < 2, and initial conditions 

4~ Y, 0) = sin(M(x + vW2)1, 

v(x, y, 0) = -(1/2112) sin[n7r((x + y)/2’12], 
w(x, y, 0) = -(1/21i2) sin[n?r((x + y)/211Z)], 
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n an integer. The solution is then 

u(x, y, t) = sin[nr((x + y)/21i2 - t)], 
u(x, y, t) = -(l/2’/“) sin[nz-((x + y)/2’/” - t)], (15) 
w(x, y, t) = -(l/29 sin[n7r((x + ~)/2’/” - t)]. 

As typical second-order methods, we choose the rotated Richtmyer scheme 
(see, for example, Wilson [28]) and the leapfrog method. For reasons of 
programming simplicity, the Kreiss-Oliger algorithm [16] was chosen to represent 
methods that are second order in time, but fourth order in space. This is by no 
means an exhaustive list, and there is need of additional tests. 

As a measure of the accuracy of the numerical solution, we shall use a 
normalized L, norm. Thus, the error is defined as 

E = 
i 

C [4X, Y2 t, - 4,il” l” 
c <qJ2 ) ’ 

where the sum is over all net points within the period rectangle, and also, over 
all components of the vector. 

In Table I, we give the mesh spacings and running times required for different 

TABLE I 

Wave Equation (n = 1) 

Method Mesh At/Ax Error Time (set) 

Rotated Richtmyer 40 x 40 0.15 0.0712 93.5 
Rotated Richtmyer 60 x 60 0.75 0.0318 306.0 
Leapfrog 40 x 40 0.50 0.0261 5.2 
Leapfrog 60 x 60 0.50 0.0115 16.3 
Leapfrog 65 x 65 0.50 0.0098 21.0 
Four step 19 x 19 1.30 0.0099 14.8 

error levels, with the longest wave y1 = 1 (see Eq. (15)). This table compares the 
four-step method given by Eq. (5) and Eq. (12) with the second-order methods. 
Thus, it is estimated that, to achieve a one-percent error, the rotated Richtmyer 
method will take about 60 times as long as the four-step method and require much 
more storage. 

The leapfrog scheme requires almost double the time of the fourth-order method. 
This comparative competitiveness of the leapfrog method will disapper with the 
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use of more complicated equations. Even in this simple case, the leapfrog method 
requires about 25 times as many net points as does the fourth-order method. 
Hence, for realistic problems, the core requirements of the second-order methods 
will greatly exceed the central storage capacities of any of the present day computing 
machines. 

Before continuing, we shall briefly discuss the problem of programming. The 
Lax-Wendroff type schemes were programmed allowing general fluxes f(u), g(u) 
and minimizing computer storage. The coding for the leap frog and Kreiss-Oliger 
methods followed the general outline of the Williamson and Browning [27] 
program. As in all multilevel schemes, the storage requirements exceed those of 
one level algorithms. For example, the Kreiss-Oliger method utilizes about twice 
the core required by the fourth-order one-level method. As for running times, the 
ones obtained for the wave equation by the four-step scheme are much longer than 
could have been achieved by a different programming approach. The fourth-order 
method is at a disadvantage in timing analysis for a simple linear wave equation. 
For more realistic problems, where the fluxes are more complicated, the fourth- 
order method will improve relative to the other methods. 

For methods that are of equal order, in both space and time, the error decreases 
as we increase the time step, for a fixed space mesh. That is, the error is smallest, 
for both shock and smooth problems, when the time step is chosen as close to 
the Courant number as possible. In Table II, we show the error that results from 

TABLE II 

Four-step Method with a Mesh of 18 x 18 (n = 1) 

At/Ax Error Time 

0.50 0.0178 32.4 

0.75 0.0147 21.4 

1.00 0.0121 16.5 

1.10 0.0117 15.3 

1.20 0.0116 14.0 

1.25 0.0118 13.4 

1.30 0.0122 12.8 

using the four-step method with varying time steps, but a constant mesh width 
of 18 x 18. We see that the error is only mildly dependent on the time step, and 
the larger dt yields a more efficient scheme. 

When one considers methods that are second order in time, but fourth order 
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in space, this conclusion is no longer true. The choice of the most efficient time 
step now depends on the permitted error levels, the mesh width, and the wave 
lengths. In Table IIIa are listed the mesh spacings and running times required to 
give a one percent error (E = 0.01). This table is for the Kreiss-Oliger scheme, 
with varying time steps for the lowest frequency, n = 1. In Table IIIb, the results 
are given for E = 0.005. We see that for the low wave number and the proper 

TABLE IIla 

Kreiss-Oliger Method (n = 1) 

At/Ax Mesh Error Time 

0.50 65 x 65 0.0097 31.70 

0.25 32 x 32 0.0095 7.80 

0.15 12 x 12 . 0.0047 0.77 

0.10 14 x 14 0.0081 1.75 

0.05 16 x 16 0.0081 5.06 

TABLE IIIb 

At/Ax Mesh Error Time 

0.25 45 x 45 0.0049 21.45 

0.15 22 x 22 0.0049 4.28 

0.10 16 x 16 0.0033 2.56 

0.05 18 x 18 0.0048 7.09 

choice of At, the Kreiss-Oliger scheme is more efficient than the four-step method. 
However, the choice of At = 0.5 would have lead to a different conclusion. We 
also see that the error does not decrease monotonically as one decreases the step 
size in either the space or time directions. In Table IV, we show the error for fixed 
At/Ax = 0.15, while dx, dy vary. We see that the error does not decrease mono- 
tonically, even for small error levels, when, hopefully, the scheme is within its 
asymptotic range. The reason is that there is a fortuitous cancellation of errors 
at certain mesh lengths (see also Swartz and Wendroff [25]). Halving the mesh 
size reduces the error by a factor less than four. Hence, it may be more appropriate 
to consider sequences where (AtwAx is constant, rather than At/Ax. This, however, 
will affect the treatment of boundary conditions. In Tables Va and Vb, we ti 
the mesh at 15 x 15 and 30 x 30, respectively, and vary d f/Ax. The error reaches 



MULTIDIMl3NSIONAL DIFFERENCE SCHEMES 101 

TABLE IV 

Kreiss-Oliger Method (dr/dx = 0.15, n = 1) 

Mesh 

10 x 10 

11 x 11 

12 x 12 

13 x 13 

14 x 14 

15 x 15 

20 x 20 

25 x 25 

30 x 30 

40 x 40 

Error Time 

0.0252 0.46 

0.0122 0.58 

0.0047 0.77 

0.0002 0.96 

0.0024 1.18 

0.0039 1.44 

0.0052 3.27 

0.0043 6.21 

0.0033 10.78 

0.0021 25.40 

TABLE Va 

Kreiss-Oliger Method (Mesh 15 x 15, n = 1) 

At/Ax Error Time 

0.50 0.1762 0.50 

0.25 0.0332 0.88 

0.15 0.0039 1.44 

0.10 0.0052 2.13 

0.05 0.0107 4.21 

TABLE Vb 

Kreiss-Oliger Method (Mesh 30 x 30, n = 1) 

At/An Error Time 

0.50 0.0451 3.38 

0.25 0.0107 6.39 

0.15 0.0033 10.79 

0.10 0.0010 16.22 

0.05 0.0003 32.36 
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a minimum at some At/Ax, which decreases with finer mesh spacings. As At/Ax 
goes to zero, for fixed Ax, Ay, the error does not continually decrease (compare 
with Gary [lo]). It is not clear what affect this will have on techniques utilizing 
Richardson extrapolation. 

The Kreiss-Oliger method was then used to solve the wave equation with an 
initial wave number of two. In Table VI, we see that the mesh widths required for 
a 0.01 error are not half of those required for N = 1 and the same error level 
(Table IIIa). For example, for At/Ax = 0.25, n = 1 and E = 0.01, we require 
a mesh of 32 x 32 (Table IIIa). When we increase to n = 2 the Kreiss-Oliger 
scheme now requires a mesh of 90 x 90 (Table Via). This is half the mesh width 
that was used when it = 1, but E = 0.005 (Table IIIb). Thus, it is not enough to 
specify the number of mesh points per wavelength, but one must state with respect 
to which wave number. Even if one chooses 01 = (At)/(d~)~ constant the optimal 01 
is wave number dependent. 

TABLE Via 

Kreiss-Oliger Method (n = 2) 

At/Ax Mesh Error Time 

0.25 90 x 90 0.0099 168.5 

0.15 44 x 44 0.0098 33.5 

0.10 31 x 31 0.0084 17.8 

0.05 36 x 36 0.0097 55.2 

TABLE Vlb 

Four-Step Method 

At/Ax Mesh Error Time 

1.30 41 x 41 0.0147 148.5 

1.30 46 x 46 0.0095 211.5 

The four-step fourth-order method is more efficient than the Kreiss-Oliger 
method for sufficiently small error levels. The exact level of this error tolerance 
will depend on the complexity of the equations. The above argument shows that 
the fourth-order method will also be more effcient when we fix the error level, but 
allow higher frequencies to enter the solution. Thus, even in the simple wave 
equation, the four-step method is faster if IZ is chosen sufficiently large. For realistic 
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problems it is not clear what wavelengths will appear, and hence, what is the optimal 
choice of At/Ax for the second-order time but fourth-order space schemes. Thus, 
much of its speed advantages at low frequencies may not be realizable. At higher 
frequencies, the unequal treatment of space and time is a disadvantage. 

It is obvious that, as the computational time needed for an evaluation of the 
flux terms increases, that the four-step method becomes more competitive. Thus, 
for sufficiently complexfand g, the four-step method requires four flux evaluations 
forfand g at each mesh point. The optimal time step for the Kreiss-Gliger scheme 
is about one tenth that of the fourth-order method. Hence, in this case, the Kreiss- 
Oliger method will take about two and one-half times as long to compute the 
solution on the same mesh. 

As a second problem, we consider wave motion down an infinite elastic plate. 
The equations are those of linear elasticity, i.e., 

p*t = Tll,a: + 712,v 9 

PVt = 712.x + 722.21 3 

711.t = c+ + 8 + h, 

712.t = CL@, + v3, 
7 - Au, + (2p + 8 v, > 22.t - 

where p, A, ~1 are positive constants. The solution is periodic in the x direction, and 
so we integrate the equations in the domain 0 < x < 1, 0 < y < 1. We assume 
periodic boundary conditions in the x direction and symmetry about the y-axis, 
y = 0. At y = 1, we have free surface conditions, 712 = 722 = 0. For details 
of this problem and its solution, see Mindlin [18] and Turkel [26]. As a measure 
of accuracy of the solution, we shall now consider phase velocities rather than L2 
errors. 

Let pas(u) denote the position of the zero of the u component of velocity. This 
is found for each y and then averaged in the y direction. We then define the phase 
error by 

E 
1) 

= PosW? Y, 0) - PosKJ 
posW, Y, tN * 

We also define the energy loss by 

WCHG = initial energy - energy at time t 
initial energy 9 

the solution was calculated using a mesh of 16 x 16 and time steps 

CFL . (dx) 
dt = ((A + 2uypy2 ’ 
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with CFL = 0.471, and CFL = 0.754. The numerical solution was found for 
four periods of the analytic solution. For the analytic solution, WCHG is identically 
zero, and hence, a negative numerical WCHG indicates instability. 

The periodicity conditions in the x direction and the axis of symmetry, y = 0, 
pose no special problems for a fourth-order method. However, the boundary y = 1 
requires special treatment. Any fourth-order method in the space direction requires 
a domain of dependence of at least two mesh widths in each direction. Hence, the 
standard difference equations cannot be used along the lines y = 1 and 
y = 1 - dy. Once the solution is known along y = 1 - dy, the solution on the 
upper boundary y = 1 can be found by space extrapolation. The four-step 
method is not dissipative in the sense of Kreiss, since / G(n, n)l = 1. Nevertheless, 
space extrapolation does not seem to cause serious difficulties. 

Along the line interior to the boundary, two techniques were tried. The first was 
to use a second-order two step method. Several such methods were tried, but the 
resultant hybrid schemes were all unstable. Preliminary analysis indicates that the 
difference in phase speeds in the two sets of equations, second and fourth order, 
leads to incorrect coupling of the solutions (compare Browning, Kreiss, and 
Oliger [6]). Evidently, the boundary value problem still requires much analysis. 
As a substitute method, the analytic solution was prescribed along y = 1 - dy 
and space extrapolation used for y = 1. This time, no instabilities were detected. 
In Table VII, the results of the four-step method are compared with several 
second-order methods. As expected, the phase error and dissipation are both 
decreased when using higher-order methods. The dissipation in the fourth-order 
method decreases markedly as the time step is increased, consistent with stability 
requirements. In fact, for CFL = 1.047, the energy loss is about &- of that found 
for CFL = 0.471. 

As a third problem, we consider a rotating cone, or the color problem (see 
Burstein and Mirin [7], Orszag [19]). The equation is given by 

rt - yr, + xr, = 0, -l<x<l, -l<y<l, (17) 

where r denotes the height of the cone. Though the problem is linear, the coefficients 
are now functions of the space variables. The initial condition is 

r(x, y, 0) = 1 - (((x - x2 + yWzY2, 

= 0, 

(x - x0)2 + y2 < r2 = A, 

(x - x0)2 + y2 > r2. 

The solution is simply the inverted cone rotating uniformly about the origin. In 
Table VIII is shown that the maximum and minimum of the solution at mesh 
points, after one complete revolution with x = y = &. The pseudospectral 
method includes wave numbers through 16. We see that the fourth-order method 
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TABLE VIIa 

Elastic Waves (Mesh 16 x 16, CFL = 0.471) 

Scheme WCHG Eli 

Lax-Wendroff 0.130 0.027 
Leapfrog -0.009 0.029 
Time splitting 0.176 0.026 
Rotated Richtmyer 0.171 0.068 
Burstein 0.035 0.047 
Fourth order 0.116 0.001 

TABLE VIIb 

Elastic Waves (Mesh 16 x 16, CFL = 0.754) 

Scheme WCHG ED 

Lax-We&off -0.748 0.020 
Leapfrog Unstable - 

Time splitting 0.179 0.020 
Rotated Richtmyer 0.209 0.060 
Burstein -0.028 0.042 
Fourth order 0.025 0.001 

TABLE VIII 

Rotating Cone (Mesh 32 x 32, One Complete Revolution) 

Method 
Maximum at 

gridpoint Minimum 

Arakawa second order 0.51 -0.23 
Arakawa fourth order 0.83 -0.10 
Pseudospectral (k = 16) 0.98 -0.02 
Four step fourth order 0.78 -0.09 
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decreases the amplitude of the cone. This is to be expected, since the scheme is 
dissipative. The dissipation is about the same as the second order in time and 
fourth order in space Arakawa scheme, but considerably less than second-order 
methods. The dissipation of the fourth-order method also decreases the negative 
overshoots. It still remains to be determined if the pseudospectral method requires 
prohibitive running times, especially for complicated boundary shapes. 

As a final application, we consider a fluid dynamic problem with a strong 
shock. The equations are 

Pt + (P& + w, = 0, 
(PU), + CPU2 + P>cc + wJ>v = 0, 
(Pet + (PU&? + (P2 + PI, = 02 

Et + ME + P>), + (4E + P)>, = 0, 
(18) 

withp = 0.4~~5 E = p[e + $(u" + v")]. 
The initial conditions represent a circular diaphragm problem, i.e., two sets 

of constant states, separated by a diaphragm which is removed at t = 0. Thus, 
forX2 +y2 < 1, 

P(X, Y, 0) = 1, 4% Y, 0) = 0, 
4% Y, 0) = 0, Ax, Y, 0) = 1, 

while for x2 + y2 > 1, the initial condition is 

P(X,Y, 0) = 4, 4x, Y, 0) = 0, 
4x, Y, 0) = 0, IO, Y, 0) = 4. 

The solution consists of a shock wave that implodes towards the origin. Upon 
reaching the origin, the shock reflects and expands outwards. The analytic solution 
to this problem is not known. However, by introducing polar coordinates, one 
can reduce this to a one-dimensional problem, which then can be solved with a 
fine mesh. It is obvious that the two-dimensional approach cannot be as efficient 
as the one-dimensional method. The purpose is not to gain new answers to the 
cylindrical shock problem, but to demonstrate that the fourth-order method 
automatically handles even strong shocks. The solution to the two-dimensional 
problem by the fourth-order method is compared with the solution obtained by 
Abarbanel and Goldberg [l] to the one-dimensional problem. For the 20 problem, 
a mesh was chosen so that there are 25 points per radius. Since the domain of 
integration is -2 < x < 2 and -2 < y < 2, the total mesh was 100 x 100, 
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not including reflection lines to handle the exterior boundaries. It was found that 
one could choose the time step so that 

At < 1.2Llx/ma3x[l 24 1 + c; 121 1 + c]. 

The one-dimensional problem used as the standard solution was solved using 
100 points per radius. Figure 1 gives the pressure versus radius curves at various 
times using the fourth-order method. Figure 2 shows the curves obtained by 
Abarbanel and Goldberg ([l, Fig. 31). The qualitative agreement between the two 
graphs is apparent. More specifically, the arrival time of the converging shock at 

FIG. I. Pressure versus radius for given times. Four-step two-dimensional method with 
Ax = Ay = l/25 and CFL = 1.2. 

the center is estimated from Fig. 1 to be t w 0.60 as compared to 0.57 in [I]. Even 
this relatively small error might be attributable to the inaccuracies in describing 
the initial circle of discontinuity by a coarse mesh. This indicates that indeed the 
four-step fourth-order accurate scheme can handle shocked-flows. Even for a 
relatively coarse mesh, the shock speed was fairly accurate. Note that no special 
treatment at the center is necessary (compare [l]). A change of the parameters 
in Eq. 5 could make the scheme more dissipative and eliminate the post shock 
oscillations. 
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FIG. 2. Pressure versus radius for given times. From Abarbanel and Goldberg [l] using a 
one-dimensional code. 

For problems where shocks are the only phenomenon of importance, fourth- 
order methods will not offer great efficiency. In the shock region itself, all schemes 
have basically first-order accuracy, though Apelkrans [5] and Orszag-Jayne [20] 
have shown that, even here, high-order methods offer slight advantages using a 
fixed mesh. Another advantage is in contact discontinuity problems. Finite- 
difference methods will diffuse the contact discontinuity at the rate of (n)l”“, where 
k is the order of the method and IZ is the number of time step. In multidimensional 
problems, the meshes are, of necessity, coarse. Hence, the only practical method 
of following these discontinuities for any appreciable length of time (without 
special methods, see, e.g., Harten [13] is to use high-order methods, where k is 
large. Nevertheless, a major application of high-order methods will be to problems 
where shocks may occur, but the smooth portion of the flow is also of interest. 
Thus, one wishes to use a method that solves the smooth portion accurately, but 
still is not nonlinearly unstable and yields the correct shock speeds. 

5. CONCLUSIONS 

A method is presented for solving nonlinear hyperbolic systems with fourth- 
order accuracy, in both space and time. Since the equations are expressed in 
divergence free form, shocks are automatically handled correctly. The most general 
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scheme can be expressed in terms of 11 free parameters. One particular scheme was 
chosen on heuristic grounds. However, there is an obvious need to study this 
family in further detail, to try and optimize its properties. For the scheme chosen 
computational results indicate a stability criterion 

p = spectral radius, 

at least for equations that are simultaneously symmetrizable. 
A series of problems are studied numerically and comparisons made with other 

methods. In general, any of the methods that are fourth order in space are much 
more efficient than second-order methods. Within the class of fourth-order space 
methods, the choice is problem dependent. For problems that are sufficiently 
simple, e.g., the wave equation, the schemes of Kreiss-Oliger type scheme seem 
to be the most efficient. Here, it is difficult to justify the extra work required for 
fourth-order accuracy in time. Similarly, methods that require Fourier expansions 
or inversions of implicit methods will not be efficient for such problems. Yet, 
even in this simple case, the Kreiss-Oliger method has several disadvantages. 
The optimal time step is dependent on the error tolerance as well as the wave 
numbers included within the solution. In general, this optimal time step cannot 
be predicted in advance. It is not clear whether this applies to all methods that are 
second order in time but higher order in space. Second, the leapfrog (time) methods 
usually suffer from the generation of wakes behind places where the solution is 
not sufficiently smooth (see, for example, Abarbanel, Gottlieb, and Turkel [3]). 

For problems of increased complexity, the advantages of the total fourth-order 
approach are more apparent. When the fluxes are sufficiently complex, one can 
compare methods strictly on the basis of counting flux evaluations. The four-step 
method thus requires four evaluations per time step. The Kreiss-Oliger scheme 
requires only one evaluation per time step. However, since its time steps are 
generally one-tenth of those required for the four-step methods, the Kreiss-Oliger 
method will require about 10 flux evaluations for the same time period. The pseudo- 
spectral method requires time steps that are l/r times as small. Thus, about the 
same number of flux evaluations are required, though the spectral methods require 
Fourier expansions. The comparisons, with implicit methods as finite element or 
fourth-order space and time implicit schemes, are more difficult to evaluate. For 
example, integrating equations over the surface of the globe frequently requires 
Fourier cutoffs for stability reasons. Here, the larger allowable time steps of the 
four-step methods, are advantageous. Similar situations occur when the forcing 
terms in the differential equations are themselves solutions of an elliptic boundary 
value problem. Hence, there is still further need of comparisons of these various 
methods on specific problems of wide interest. 
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The four-step method is also able to handle problems where shocks, or severe 
gradients, may appear in the course of time. Most other high-order methods are 
strictly nondissipative, and so not appropriate for such problems (see, however, 
Gazdag [ll]). It appears, however, that in dealing with problems containing 
discontinuities, higher-order methods will be limited to problems with contact 
discontinuities, or else problems that contain shocks, but the main interest is 
within the smooth regions of the solution. 

There is still additional work being done to improve the characteristics of the 
scheme by choosing different choices of the free parameters. At present, the method 
is being adopted for the integration of the primitive equations over the surface 
of the globe. Also, the effect of imposing various boundary conditions is presently 
being studied. 

APPENDIX A 

We want to approximate numerically the quasi-linear hyperbolic system 

% +fz fg, +A, = 0, (A. 1) 
where f, g, and h are vector functions of u. We denote the numerical approximation 
to U(X, y, z, t) by I+$~,~ . The averaging and differencing operators that we use, 
p and 6, respectively, are defined by an obvious extension of Eq. (3). Then, the 
extension of Eq. (5) to the three-dimensional case is given by, 
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Note that the two-dimensional case is recovered by setting Sz = 0, pZ = 1, and 
E5 = E6 = E7 = Q, = 8, = t& = 0, = es = 0. The consistency equations for the 
various parameters are still Eqs. (6) with the appropriate generalizations for the 
E’S and 0’s. 

APPENDIX B 

The complete expansion of wc4) in terms of w at the start of time step is given 
below. The expansion is then compared with that for w(t + At). Equating coeffi- 
cients of (d~)~(dt)~ through fourth-order terms yields Eq. (6). 

d4' = w + 4y1 + y2 + y3 + y4 + y5 + ye + y7 

+ Vl + v2 + v3 + v4 + v5 + vd Wt 

+ W2ht3 + (72 + 73) t2 + (Y4 - y5 + ys + 77) h) Wtt 

+ @t)3{(1/%'lt32 + k'2 + ?'3) t22 + (74 + 75 + y3 + r7) h2] 

x Mw)z + m&l 
+ hSd2 + Yl@2 + 83) h + dJ2 + r3> ~Il[md, + (Bwd,]) 
+ @'04{(1/W~t33 + (~2 + 73) t23 + (74 + y5 + ye + 77) t131 

581/21/I-8 
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+ P1y1t2t3 + 032 + 83) Ylflc3 + "l(YZ + y3) flj, 

- U/6)(~1j3~ + (~2 + 73) tz3 + (~4 + ~5 + ye + Y,) h3>1 
x K‘4%t), + m%J,l 

+ w2)@lYlt22 + @2 + 83) Ylj12 + %(Y2 + 731 b21 
x tMh&), + ~~MWJZ), + bww,),), + mwt),),l 
+ %PlYltlK4htM~ + ~~m%tL), + bww&, + wh),hl~ 
+ W2 4yl + 4b2 + y3) + 74 + y5 + 7y6 + 7y, + 465 + v2 + v31 

+ lO(v4 + v5 + %wiczl: + &WI 
+ (dx)’ &‘I + 273 + 74 + 37, + y6 + 3y, + 2% + 4”3 + 2% + 4”33 

x km, +Lc,,1 
+ ((M2 48)Mrll + 471~ + 3~~) + 2(y2 + YA(E~ + c4) 

+ (y4 + y5 + Ys + y,)l . KAw,,), + m%&/ + (AWA + (Bw,,),] 
+ ((dx)2(dt)2/8)[r,t3(111 + 4% + 3%) + %‘2 + Y3)cE2 + E4) t2 

+ (y4 + y5 + ye + y,) mwrr)~ + (Btw2J~ + (A,w& + (&w&l 
+ ((dx)2(dt)2/8)[2B,y,(E, + ~4) + y&32 + B,, + dyz + y3)l 

x K~(~WEZ),)% + cwwmM~ + @WmL), + @m%z),), 

+ m4A&! + MwA/)~ + M~%/L), + um%A/),l 

+ ((dx)2(dt)2/24)[yl(Bl + 4P2 + 4P3 + P4 + & + 7P6 + 7/M 

+ (y2 + y3)(a1 + %I + (y4 + y5 + y6 + Y,) hl 
x ML!‘,,,), + u!f,,,), + Gh/,,)z + mwvM 
+ ((~X)2(~t)2/%‘~@~ + @3 + fi4 + 3& + & + 3)3,) 

+ (Y2 + Y3) % + (Ya + Y5 + Ya + YJ hl 
x N4Lm/)* + mm*), + VfiWL + v4ihw),l 
WN2(~t)2/W[ylf3 + 4(y2 + y3) t2 + b4 + y5 + ys + 14 hl 
x Krrt + &wtl 
+ @W2W2/fNnt, + 21’3j2 + b’4 + 3Y5 + 7’6 + 3y,) tll 

x [sm,t + Ld 
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